Objective: In this lesson, you will prove theorems about lines and angles.

Parallel Lines and Transversals

Transversal -

Parallel lines r and s are cut by transversal t.

List the following angles:

- **Corresponding angles**:

- **Interior angles**:

- **Exterior angles**:

- **Alternate interior angles**:

- **Alternate exterior angles**:

- **Same-side interior angles**:
Geometry A
Unit 2 – Proving Theorems about Lines and Angles

- Alternate Interior Angles Theorem—
- Alternate Exterior Angles Theorem—
- Same-Side Interior Angles Theorem—

Perpendicular Bisectors

The perpendicular bisector of \overline{AB} is defined as

[Diagram showing a coordinate plane with points A, B, C, D, E, and a perpendicular bisector line]

Any point on the perpendicular bisector of a line segment is ________________________________
__

Perpendicular Bisector Theorem—___
__

Converse to the Perpendicular Bisector Theorem—_______________________________________
__

Points that lie on the perpendicular bisector of a line segment are equidistant from the endpoints of the line segment.
In this lesson, you studied four important theorems involving lines and angles:

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Statement</th>
<th>Example (see diagram)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternate Interior Angles Theorem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate Exterior Angles Theorem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same-Side Interior Angles Theorem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perpendicular Bisector Theorem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>