Objective: In this lesson, you will prove theorems about triangles.

Interior Angles of Triangles

Triangle Sum Theorem

Use the Triangle Sum Theorem to find γ_2.

$38.48 + 99.16 + \gamma_2 = 180$

$\gamma_2 = 180 - 38.48 - 99.16 = \underline{}$

Base Angles of Isosceles Triangles

Isosceles triangle

Base Angles Theorem

Angle bisector

Use the Triangle Sum Theorem to find γ_2.
Connecting Triangle Midpoints

Midsegment - ___

Line segment DE is a midsegment that connects the midpoint of line segment AB to the midpoint of line segment BC.

Triangle Midsegment Theorem — ___

__

̅̅̅̅̅̅̅ is parallel to ̅̅̅̅̅̅̅ and ̅̅̅̅ = ̅̅̅̅ = ̅̅̅̅.

̅̅̅̅̅̅̅ is parallel to ̅̅̅̅ with ̅̅̅̅ = ̅̅̅̅ = ̅̅̅̅.

̅̅̅̅̅̅̅ is parallel to ̅̅̅̅ with ̅̅̅̅ = ̅̅̅̅ = ̅̅̅̅.
Concurrent Triangle Medians

Medians - __

Line segment AD is a median connecting A to the midpoint of line segment BC.

Concurrent - __

Concurrent Triangle Medians Theorem – __

In $\triangle ABC$, medians AD, BE, and CF intersect at a common point.
Summary

In this lesson, we discussed several theorems regarding triangles:

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle Sum Theorem</td>
<td></td>
</tr>
<tr>
<td>Base Angles Theorem</td>
<td></td>
</tr>
<tr>
<td>Triangle Midsegment Theorem</td>
<td></td>
</tr>
<tr>
<td>Concurrent Triangle Medians</td>
<td></td>
</tr>
</tbody>
</table>